Simulations of Relativistic Jet Formation In Radio Sources

David L. Meier Jet Propulsion Laboratory

Oxford Meeting
On Particles & Fields in Radio Galaxies
3-5 August, 2000

Talk Outline

- Introduction: observed Lorentz factors
- Review of steady state simulations
- Pseudo-relativistic simulations and the "magnetic switch"
- General relativistic jet production and rotating black holes
- Possible scenarios for Active Galactic Nuclei

Acknowledgements

Collaborators

- General Relativistic simulations: S. Koide (Toyama University),
 K. Shibata, T. Kudoh (National Astron. Obs, Japan)
- Pseudo-relativistic simulations: D. Payne (Intel),
 - K. Lind (Silicon Graphics), S. Edgington (Caltech),
 - P. Godon (Space Telescope)

Observed Lorentz. Factors

- Component proper motions: $\Gamma \equiv (1-v^2/c^2)^{-1/2} = 5-10$ (NOTE: this may measure a pattern speed only)
- Brightness temperature measurements of Doppler boosting:

$$\Gamma \ge 0.5 T_{B,measured} / T_{B, rest frame}$$

- T_{B. rest frame} $\approx 10^{11}$ K for an equipartition synchrotron plasma
- Some measured brightness temperatures and inferred Lorentz factors:

Ground Radio VLBI:

$$T_{B,measured} \ge 10^{12} \text{ K}$$

$$\Rightarrow \Gamma \ge 5$$

• Space VLBI (VSOP):

$$T_{B,measured} \geq 7 \times 10^{12} \; K \qquad \qquad \Rightarrow \; \Gamma \geq 35$$

$$\Rightarrow \Gamma \ge 35$$

• Intra-day variable sources:

$$T_{B,estimated} \sim 5 \times 10^{14} \text{ K (?)}$$
 $\Rightarrow \Gamma \ge 2500 \text{ (?)}$

$$\Rightarrow \Gamma \ge 2500 (?)$$

The Case for Space VLBI (Part I)

- Measuring brightness temperatures is the best (and possibly only) method for determining the highest velocities nature can achieve
- A measured brightness temperature depends only on the source flux and the length of the baseline
- T_B measured from the ground is limited to $< 10^{12}$ K, <u>regardless of observing frequency</u>
- Higher T_B , and Lorentz factors significantly above 10, can be measured <u>only</u> with baselines much longer than an earth diameter \Rightarrow NEED SPACE VLBI
- VSOP has found unresolved, ~ 1 Jy, high T_B cores in nearly all sources studied (see Lister *et al.*, Piner *et al.* this meeting)
 - ⇒ A HIGHLY SENSITIVE SPACE VLBI MISSION WITH LONG BASELINES (e.g., ARISE-LITE, VSOP-2) IS CRUCIAL FOR RESOLVING THESE CORES AND MEASURING THEIR ACTUAL JET SPEEDS

Conclusions

- The magnetically-driven outflow has two main components:
 - A slowly-collimating wind from the surface of the accretion disk
 - A highly-collimated jet from the inner edge of the disk or torus
- Both types of outflow are subject to "magnetic switching": There exists a critical MHD power $L_{crit} \equiv E_{escape}/\tau_{free-fall}$ (analogous to the Eddington limit) such that
 - When the MHD power in the rotating magnetic field $L_{MHD} < L_{crit}$, gravity is *important*, and the jet/wind speed is limited to $V_{jet} \sim V_{escape}$
 - When $L_{MHD} > L_{crit}$, gravity is unimportant, and the jet/wind speed is determined mainly by the output MHD power and the mass loss: Non-relativistic:

Relativistic:

 $V_{
m jet}^2 \sim L_{
m MHD}$ $\Gamma_{
m jet}^2 c^2 \sim L_{
m MHD}$

High MHD power + low mass loss (Poynting-flux-dominated)
 ⇒ high Lorentz factors

Conclusions (continued)

- When the accreting object is a rotating black hole:
 - The jet is accelerated from the "frame-dragged" accreting matter inside the ergosphere
 - Recall:
 - The horizon is much smaller than one Schwarzschild radius (GM/c² for maximal Kerr)
 - All matter in the region $R < 2 \text{ GM/c}^2$ (the "ergosphere") must rotate with the black hole
 - The strongest and fastest jets occur when:
 - The black hole is rotating rapidly
 - The accreting material plunges rapidly into the ergosphere
 - E.g., when the accretion is an Advection-Dominated Accretion Flow [ADAF] or
 - E.g., when the accretion disk counter-rotates relative to the black hole

Review of Steady State Simulations

- Some numerical simulations have attempted to reproduce the steady state Blandford & Payne solutions (Ustyugova et al. 1995, 1999; Ouyed et al. 1997; Krasnopolsky et al. 1999)
- Key ingredients in steady-state simulations:
 - An infinitely-thin accretion disk boundary condition, stretching to R=0
 - A central mass gravitational potential with a small "smoothing radius"
 - Keplerian rotation
 - Fixed vertical magnetic field B_Z
 - Fixed mass flux along the field lines
 - Important: the following quantities on the boundary are allowed to adjust to the steady-state solution: radial B_R and toroidal B_ϕ magnetic field strength, and radial velocity V_R

Pseudo-Relativistic Simulations of Black Hole Accretion Disks

• When the disk coronal material is not a relativistic gas $(c_{sound} < c; V_{Alfvén} < c)$, the non-relativistic MHD equations are nearly identical to the relativistic ones, IF we replace the velocity V with the proper velocity U

$$V \rightarrow U = \Gamma V$$

- In these simulations, velocities much greater than 1 can be identified with the Lorentz factor Γ
- Key ingredients in these pseudo-relativistic simulations (Lind, Meier, & Payne 1994; Meier *et al.* 1997; Meier *et al.* 2000):
 - Similar to previous "disk as boundary" simulations, but
 - Infinitely-thin accretion disk has an inner radius at $R=6GM/c^2$
 - $-B_R, B_{\phi}$, and V_R are all fixed on the boundary (as would be the case in an actual accretion disk)

Pseudo-Relativistic Simulations of Black Hole Accretion Disks (continued)

- Results (Meier et al. 1997; 2000):
 - This inner disk edge and fixed disk field create a <u>new magnetic field structure</u>:
 - Gravitational and magnetic forces cause injected corona to accrete inward, above the disk
 - This bends the magnetic field inward, creating a substantial B_R
 - Differential rotation winds B_R up into B_{ϕ} , which expels and collimates a narrow jet
 - This inner jet in the accreting corona case is similar to that in the accreting torus case shown by Shibata-san
 - A <u>slowly-collimated disk wind</u> (like the Blandford-Payne solutions) <u>also occurs</u> occasionally, but usually only when the inner jet is weak

Pseudo-Relativistic Simulations of Black Hole Accretion Disks (continued)

- The "Magnetic Switch" process (Meier et al. 1997; Meier 1999):
 - There appears to be a critical MHD luminosity (analogous to the Eddington limit)

$$L_{crit} \equiv E_{escape} / \tau_{free-fall} = 4 \pi \rho_{corona} R_{corona}^2 (G M / R_{corona})^{3/2}$$

When $L_{MHD} < L_{crit}$, $V_{jet} \sim V_{esc}$, resulting in a relatively slow jet

When $L_{\rm MHD} > L_{\rm crit}$, $V_{\rm jet}$ is determined by $L_{\rm MHD} \sim \Gamma_{\rm jet}$ resulting in a relatively fast jet

General Relativistic Simulations of Black Hole Accretion Disks

- Main papers: Koide, Shibata, & Kudoh (1998);
 Koide, Meier, Shibata, & Kudoh (1999a,b)
- Key ingredients:
 - Thick accretion disk with inner edge at $R = 4.5 \text{ GM/c}^2$
 - Initial vertical weak magnetic field $(V_{Alfvén} = 0.01c)$
 - Fixed general relativistic gravitational potential and fully relativistic MHD flow
- Five scenarios were simulated:
 - Non-rotating (Schwarzschild) black hole, non-rotating (ADAF-like) disk
 - Non-rotating black hole, Keplerian disk
 - Rotating (Kerr) black hole (a/M=0.95),
 non-rotating (ADAF-like) disk
 - Rotating black hole, Keplerian disk
 - Co-rotating with the black hole rotation
 - · Counter-rotating against the black hole rotation

General Relati Simulations of Black Hole Accretion Disks (continued)

- Results for Kerr (rotating) hole, counter-rotating disk:
 - Disk plunges rapidly toward black hole (counter-rotating orbits are unstable!)
 - Dragging of inertial frames by rotating black hole reverses spin of disk
 - A jet is generated from the inner disk edge in a manner similar to non-relativistic simulations
 - A very low density region forms inside the jet --potentially the beginning of a magnetically-switched,
 high Lorentz factor flow
- Similar results for Kerr hole, non-rotating disk:
 - Disk free-falls rapidly into ergosphere
 - Rotation of black hole contributes significantly to acceleration of jet
 - Highest jet velocities achieved so far are of order the ergospheric escape velocity: $\Gamma < 3$

General Relativistic Simulations of Black Hole Accretion Disks (continued)

- Results for Kerr hole, co-rotating disk:
 - Disk accretes slowly toward black hole (co-rotating orbits are stable!)
 - Some outflow is produced, but it is rather slow so far $(V_{jet} \sim 0.4 c)$
 - Further evolution is unclear (simulation had to be stopped for numerical reasons)
- Results for Schwarzschild holes:
 - Jet is produced only when the disk is rotating
 - Jet speed is limited to $V_{jet} \sim V_{esc} \ (R=6GM/c^2) = 0.6 \ c$
- Summary from all simulations: The fastest and most powerful jets are produced when
 - The central black hole rotates rapidly
 - The accreting material falls rapidly into the ergosphere
 - The material accelerated in the jet is of very low density (i.e., $L_{MHD} > L_{crit}$ or, for Keplerian rotation, $V_{Alfvén} > V_{esc}$)

Summary of All Simulations Performed

- The fastest and most powerful jets are produced when
 - The central black hole rotates rapidly
 - The accreting material falls rapidly into the ergosphere
 - The material accelerated in the jet is of very low density (i.e., $L_{MHD} > L_{crit}$ or, for Keplerian rotation, $V_{Alfv\acute{e}n} > V_{esc}$)

Two Possible Scenarios for AGN

- Scenario #1: Advection-Dominated Accretion Flow into Rotating Black Hole
 - Rapid infall toward black hole
 - Little rotation in the accretion flow until it plunges into the ergosphere
 - Jet is produced and collimated very near the black hole
 - Much of the outflow is at the escape velocity $(\Gamma < 3)$
 - Highest Lorentz-factor flow ($\Gamma >> 10$) can occur in low-density, Poynting-flux-dominated, "coronal holes"

Two Possible Scenarios for AGN (continued)

- Scenario #2: Advection-Dominated Coronal Accretion Flow
 - Magnetic field is anchored in thin Keplerian-rotating accretion disk
 - Rotating disk can accelerate inner jet or outer wind
 - Again, much of the outflow is at the escape velocity (Γ < 3)
 - But, high Lorentz-factor flow ($\Gamma >> 10$) can occur in low-density, Poynting-flux-dominated, "coronal holes"
 - <u>Jet can be collimated far from the black hole and still have a high Lorentz factor</u> (cf. M87)

Two Possible Models for M87: The Case for Space VLBI (Part II)

- Model #1: <u>broad relativistic wind</u> from accretion disk, collimating into a highly-relativistic jet
- Model #2: <u>satellite rotating black</u> <u>hole</u> with highly-collimated, relativistic inner jet

⇒ A SENSITIVE SPACE VLBI MISSION WITH 22 and 43 GHz IMAGING WILL BE ABLE TO DISTINGUISH BETWEEN THESE TWO MODELS

The Future

- General relativistic MHD simulations
 - Improve GRMHD code to handle very low-density flows
 - Investigate magnetic switching in fully-relativistic, finitethickness accretion disk situations
- Accretion disk structure calculations
 - Investigate the structure of a rotating black hole magnetosphere and its implications for MHD-driven outflow